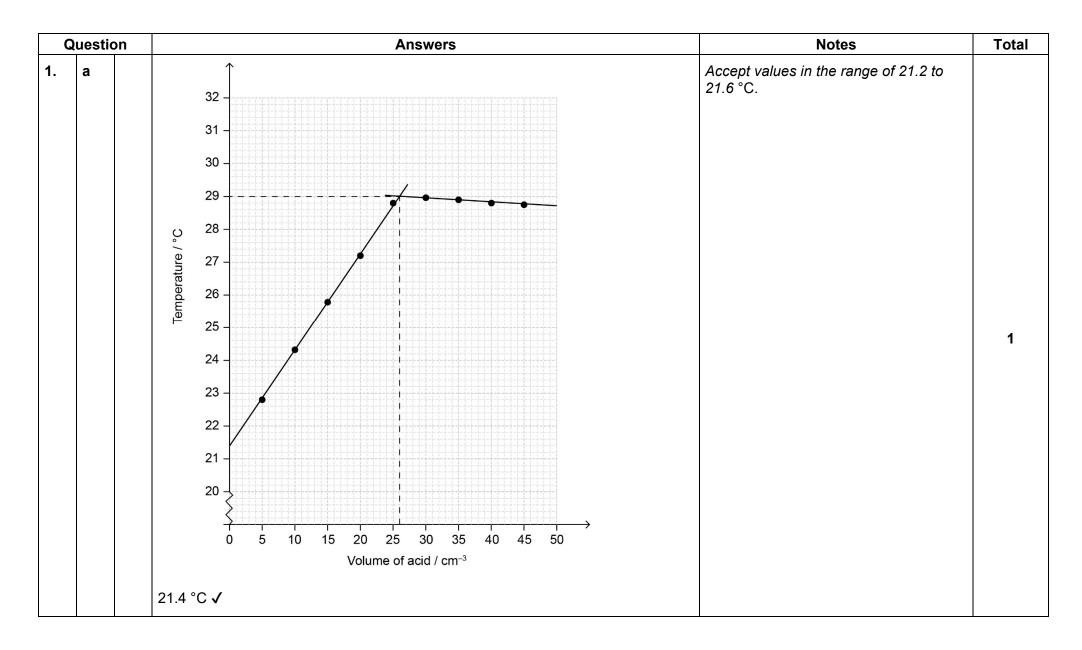
N17/4/CHEMI/SP2/ENG/TZ0/XX/M

Markscheme

November 2017

Chemistry


Standard level

Paper 2

13 pages

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

C	uestio	on	Answers	Notes	Total
1.	b		29.0 «°C» ✓	Accept range 28.8 to 29.2 °C.	1
1.	с		ALTERNATIVE 1 «volume CH ₃ COOH =» 26.0 «cm ³ » ✓	Accept values of volume in range 25.5 to 26.5 cm ³ .	
			«[CH ₃ COOH] = 0.995 mol dm ⁻³ × $\frac{50.0 \text{ cm}^3}{26.0 \text{ cm}^3}$ =» 1.91 «mol dm ⁻³ » ✓	Award [2] for correct final answer.	2
			ALTERNATIVE 2		2
			« <i>n</i> (NaOH) =0.995 mol dm ⁻³ × 0.0500 dm ³ =» 0.04975 «mol» √		
1.	d	i	«total volume = 50.0 + 26.0 =» 76.0 cm ³ AND «temperature change 29.0 − 21.4 =» 7.6 «°C» \checkmark	Award [2] for correct final answer.	2
			« q = 0.0760 kg × 4.18 kJ kg ⁻¹ K ⁻¹ × 7.6 K =» 2.4 «kJ» ✓		

0	Questi	on	Answers	Notes	
1.	d	ii		Award [2] for correct final answer. Negative sign is required for M2.	2
1.	e	i	 «initially steep because» greatest concentration/number of particles at start OR «slope decreases because» concentration/number of particles decreases ✓ volume produced per unit of time depends on frequency of collisions OR rate depends on frequency of collisions ✓ 		2
1.	e	ii	mass/amount/concentration of metal carbonate more in X OR concentration/amount of CH ₃ COOH more in X ✓		1

G	uestion	Answers	Notes	Total
2.	a	 increasing number of protons OR increasing nuclear charge ✓ «atomic» radius/size decreases OR same number of shells OR similar shielding «by inner electrons» ✓ «greater energy needed to overcome increased attraction between nucleus and electrons» 		2
2.	b	atomic/ionic radius increases ✓ smaller charge density OR force of attraction between metal ions and delocalised electrons decreases ✓	Do not accept discussion of attraction between valence electrons and nucleus for M2. Accept "weaker metallic bonds" for M2.	2
2.	С	$P_4O_{10}(s) + 6H_2O(I) \rightarrow 4H_3PO_4(aq) \checkmark$	Accept " P_4O_{10} (s) + 2 H_2O (I) \rightarrow 4 $HPO_3(aq)$ " (initial reaction).	1
2.	d	«series of» lines <i>OR</i> only certain frequencies/wavelengths ✓ convergence at high«er» frequency/energy/short«er» wavelength √	M1 and/or M2 may be shown on a diagram.	2

C	Question		Answers	Notes	Total
2.	е	i	Mn ✓		1
2.	е	ii	$Mn(s) + Ni^{2+}(aq) \rightarrow Ni(s) + Mn^{2+}(aq) \checkmark$		1
2.	e	iii	wire between electrodes <i>AND</i> labelled salt bridge in contact with both electrolytes √ anions to right (salt bridge) <i>OR</i> atrow from Mn to Ni (on wire or next to it) √ I = I = I + I + I + I + I + I + I + I +	Electrodes can be connected directly or through voltmeter/ammeter/light bulb, but not a battery/power supply. Accept ions or a specific salt as the label of the salt bridge.	2

C	Questic	on		Ansv	wers	Notes	Total
3.	а		Lewis structure Molecular geometry	$\frac{PF_{3}}{I\underline{F}} \xrightarrow{P} I\underline{F} I\underline{F} I$ \checkmark trigonal pyramidal \checkmark	$\begin{array}{c} PF_{4^{+}} \\ \hline \\ \hline \\ I\overline{F} \\ I\overline{F} \\ \hline \\ I\overline{F} \\ I\overline{F} \\ \hline \\ I\overline{F} \\ I\mathsf$	Accept any combination of dots, crosses and lines. Ignore missing brackets and positive charge. Penalize missing lone pairs once only. Do not apply ECF for molecular geometry.	4
3.	b		OR	d polarities/dipoles do not		Apply ECF from part (a) molecular geometry.	1

C	Question	Answers	Notes	Total
4.	a	carbon: $\left(\frac{0.4490 \text{ g}}{44.01 \text{ g mol}^{-1}}\right) = 0.01020 \text{ (mol}) / 0.1225 \text{ (g})$ OR hydrogen: $\left(\frac{0.1840 \times 2}{18.02}\right) = 0.02042 \text{ (mol}) / 0.0206 \text{ (g}) \text{ (f})$ oxygen: $\left(0.1595 - (0.1225 + 0.0206)\right) = 0.0164 \text{ (g}) / 0.001025 \text{ (mol}) \text{ (f)}$ empirical formula: $C_{10}H_{20}O \text{ (f)}$	Award [3] for correct final answer.	3
4.	b	temperature = 423 K OR $M = \frac{mRT}{pV} \checkmark$ $\ll M = \frac{0.150 \text{ g} \times 8.31 \text{ JK}^{-1} \text{ mol}^{-1} \times 423 \text{ K}}{100.2 \text{ kPa} \times 0.0337 \text{ dm}^3} = 156 \text{ sg mol}^{-1} \text{ ss}^{-1} \checkmark$	Award [1] for correct answer with no working shown. Accept "pV = nRT AND $n = \frac{m}{M}$ " for M1.	2

C	Questi	ion		Answers		Notes	Total
5.	а		Increasing the volume, at constant temperature	Effect none/no effect ANI	Reason o same number of «gas» moles/molecules on both sides √	Award [1 max] if both effects are correct. Reason for increasing volume:	
			Increasing the temperature, at constant pressure	moves to left AN		Accept "concentration of all reagents reduced by an equal amount so cancels out in K_c expression". Accept "affects both forward and backward rates equally".	2
5.	b	i	HCO3 ⁻ AND H2O √				1
5.	b	ii	species that has one less p OR species that forms its conju OR species that is formed when	gate acid by accepting a p	proton	Do not accept "differs by one proton/H ⁺ from conjugate acid".	1
5.	b	iii	oxide ion/O ^{2−} ✓				1

C	Questic	n Answers	Notes	Total
5.	Questic c	n Answers insufficient data to make generalization OR OR need to consider a «much» larger number of acids OR New Provide the stand the test of time √	Notes	Total
		 whypothesis is false as» other acids/HCI/HBr/HCN/transition metal ion/BF₃ do not contain oxygen OR other acids/HCI/HBr/HCN/transition metal ion/BF₃ falsify hypothesis √ 		2 max
		correct inductive reasoning «based on limited sample» \checkmark		
		«hypothesis not valid as» it contradicts current/accepted theories/Brønsted- Lowry/Lewis theory ✓		

C	Questi	ion		Answers		Notes	Total
6.	а	i	oxidation/redox <i>AND</i> acidifie <i>OR</i> oxidation/redox <i>AND</i> «acidit			Accept "acidified «potassium» dichromate" OR "«acidified potassium» permanganate". Accept name or formula of the reagent(s).	1
6.	a	II	ALTERNATIVE 1 using K₂C Compound A: orange to gree OR Compound A: orange to gree Compound A: orange to gree Compound B: no change A ions» √ ALTERNATIVE 2 using KM Compound A: purple to cold OR Compound A: purple to cold ions» √ Compound B: no change A ions» √	een <i>AND</i> secondary hydrox een <i>AND</i> hydroxyl oxidized <i>ND</i> tertiary hydroxyl «not o <i>InO₄:</i> purless <i>AND</i> secondary hydroxyl oxidi	«by chromium(VI) ions» ✓ xidized by chromium(VI) droxyl zed «by manganese(VII)	Award [1] for "A: orange to green AND B: no change". Award [1] for "A: secondary hydroxyl AND B: tertiary hydroxyl". Accept "alcohol" for "hydroxyl". Award [1] for "A: purple to colourless AND B: no change" Award [1] for "A: secondary hydroxyl AND B: tertiary hydroxyl". Accept "purple to brown" for A.	2
6.	а	iii	Compound A B	Number of signals 5 ✓ 4 ✓	Ratio of areas 6:1:1:1:1 ✓ 6:1:1:2 ✓	Accept ratio of areas in any order. Do not apply ECF for ratios.	4

Question	Answers	Notes	Total
6. b	Initiation: $Br_2 \xrightarrow{UV / hv / heat} 2Br \cdot \checkmark$ Propagation: $Br \cdot + C_2H_6 \rightarrow C_2H_5 \cdot + HBr \checkmark$ $C_2H_5 \cdot + Br_2 \rightarrow C_2H_5Br + Br \cdot \checkmark$ Termination: $Br \cdot + Br \cdot \rightarrow Br_2$ OR $C_2H_5 \cdot + Br \cdot \rightarrow C_2H_5Br$ OR $C_2H_5 \cdot + C_2H_5 \cdot \rightarrow C_4H_{10}\checkmark$	 Reference to UV/hv/heat not required. Accept representation of radical without (eg, Br, C₂H₅) if consistent throughout mechanism. Accept further bromination. Award [3 max] if initiation, propagation and termination are not stated or are incorrectly labelled for equations. Award [3 max] if methane is used instead of ethane, and/or chlorine is used instead of bromine. 	4